Dedication

This drainage management manual is dedicated to the memory of Frank Menezes, who passed away in 2001.

Frank was a valuable asset to the San Joaquin Valley’s Westside agricultural community, focusing on salinity and drainage management – in particular, development of the Integrated On-Farm Drainage Management system.

Frank’s technical knowledge, practical understanding of farmers’ and ranchers’ needs, and warm and engaging manner made him one of the Westside’s most respected and beloved individuals. Because of his tireless efforts in helping develop and implement IFDM systems on Red Rock Ranch and at other sites, this publication is dedicated to Frank Menezes.
Managing Agricultural Irrigation Drainage Water

Table of Contents

Chapter 1: General Information
 Introduction .. 1-1
 This manual ... 1-2
 History ... 1-2

Chapter 2: Salt Management Using IFDM
 Introduction ... 2-1
 Land Retirement .. 2-1
 Drainage Water Reuse .. 2-1
 What is an IFDM System and How Does It Work? ... 2-2
 Components of an IFDM System .. 2-3
 Solar Evaporator .. 2-4
 Site Evaluation & Considerations .. 2-5
 Climatology .. 2-6
 Groundwater .. 2-6
 Regional Groundwater Flow .. 2-6
 Soil .. 2-7
 Farm Area ... 2-8
 Subsurface Drainage System .. 2-8
 Water Management & Monitoring ... 2-8
 Crop and Tree Areas .. 2-12
 System Operation & Maintenance .. 2-13
 Future Investigations .. 2-14

Chapter 3: Monitoring, Recordkeeping and Reporting
 Introduction ... 3-1
 Data Quality .. 3-1
 Monitoring and Reporting Program ... 3-1
 Reporting Requirements ... 3-4

Chapter 4: The Impact of Geology and Soils in Salt Management
 Introduction ... 4-1
 Soils of the Westside – geography and geology .. 4-1

Chapter 5: Drainage Water Characteristics
 Introduction ... 5-1
 Units of measurement ... 5-1

Chapter 6: Plant Selection for IFDM
 Introduction ... 6-1
 Considerations for Proper Plant Selection .. 6-1
 Field crops and vegetables ... 6-4
 Salt-tolerant forages ... 6-6
 Halophytes .. 6-10
 Trees ... 6-12
 Conclusion ... 6-13

List of Tables

Chapter 2:
 Table 1: An example of monthly weather data available from CIMIS Page 2-6
 Table 2: Estimated size of the solar evaporator .. Page 2-11
 Table 3: Water applied to solar evaporator (time required per day @ 250 gpm/acre) Page 2-12

Chapter 5:
 Table 1: Conversion factors for drainage waters in the San Joaquin Valley Page 5-3
 Table 2: Irrigation guideline limits for various constituents and water quality targets for wildlife ... Page 5-4
 Table 3: Composition of drainage water used to irrigate salt-tolerant forages and halophytes in drainage water reuse projects on the Westside of the San Joaquin Valley .. Page 5-5

Chapter 6:
 Table 1: Drainage water constituents having potential impacts on plants, soil structure, migratory waterfowl and wildlife, ruminant animals, and groundwater or surface water ... Page 6-1
 Table 2: Comparison of salinity tolerance and profit potential for various plants in an IFDM system .. Page 6-2
 Table 3: Soil salinity threshold (ECe) .. Page 6-3
 Table 4: Example of Maas Hoffman salinity tolerance coefficients and slopes for field crops and vegetables (Maas & Grattan, 1999) Page 6-4
 Table 5: The maximum percent of saline water (4 to 10 dS/m) that can be mixed with non-saline irrigation water (0.8dS/m) to achieve a yield potential of 100% and 80% for selected crops that vary in salt tolerance. Estimates assume a leaching fraction of 25% (Dinar and Letey) Page 6-5
 Table 6: Comparison of salt tolerant forages ... Page 6-7
 Table 7: Forage quality for Jose Tall Wheatgrass growing at Red Rock Ranch .. Page 6-8
 Table 8: Comparison of halophytes ... Page 6-9

Chapter 7:
 Table 1: Water quality objectives for the protection of wildlife Page 7-4

Chapter 8:
 Table 1: The estimated costs of installing, operating, and maintaining the solar evaporator and the estimated annual costs of land used for the evaporator, salt tolerant crops, forages and halophytes .. Page 8-2
Managing Agricultural Irrigation Drainage Water

List of Figures

Chapter 2:
Figure 1: Multiple stage sequential water reuse ... Page 2-2
Figure 2: AndrewsAg IFDM. Sequential re-use, three stages (1035 acres) Page 2-2
Figure 3: Red Rock Ranch IFDM. Sequential re-use, four stages (640 acres) Page 2-3
Figure 4: Solar evaporator and water catchment basin ... Page 2-10
Figure 5: Solar evaporator with salt concentrator and water catchment basins Page 2-11
Figure 6: Evaporation rates throughout the year ... Page 2-12

Chapter 3:
Figure 1: EM-38 survey equipment .. Page 3-7
Figure 2: Salinity map created from EM-38 survey data (values represented in this map are ECe (dS/m). ... Page 3-7

Chapter 5:
Figure 1: Salt accumulation in the San Joaquin Valley totals about 11 semi-trailers an hour at 25 tons per truck ... Page 5-2

Chapter 7:
Figure 1: Bio-accumulation of selenium flow-chart for wildlife Page 7-3

Managing Agricultural Irrigation Drainage Water

Chapter 7: Drainage Water and its Effect on Wildlife Resources
Introduction... 7-1
Laws that address wildlife issues ... 7-1
Constituents of concern ... 7-2
Water quality objectives .. 7-4
Biological sampling .. 7-4

Chapter 8: IFDM Economics
Introduction.. 8-1
Cost Breakdown ... 8-1
Funding Sources .. 8-2

Chapter 9: Laws and Regulations
Introduction.. 9-1
Questions That Should be Answered Before Proceeding with the Project 9-1
Regulatory Requirements .. 9-2
Environmental Evaluation Resources.. 9-6
Answers to the Most Common Questions Concerning the Solar Evaporator Regulations ... 9-7

References... R-1
Appendix ... A-1
Glossary .. Glossary-1
Managing Agricultural Irrigation Drainage Water

List of Figures

Chapter 2:
Figure 1: Multiple stage sequential water reuse ... Page 2-2
Figure 2: AndrewsAg IFDM. Sequential re-use, three stages (1035 acres) Page 2-2
Figure 3: Red Rock Ranch IFDM. Sequential re-use, four stages (640 acres) Page 2-3
Figure 4: Solar evaporator and water catchment basin ... Page 2-10
Figure 5: Solar evaporator with salt concentrator and water catchment basins Page 2-11
Figure 6: Evaporation rates throughout the year ... Page 2-12

Chapter 3:
Figure 1: EM-38 survey equipment .. Page 3-7
Figure 2: Salinity map created from EM-38 survey data .. Page 3-7

Chapter 5:
Figure 1: Salt accumulation in the San Joaquin Valley totals about 11 semi-trailers an hour at 25 tons per truck. ... Page 5-2

Chapter 7:
Figure 1: Bio-accumulation of selenium flow-chart for wildlife Page 7-3

Managing Agricultural Irrigation Drainage Water

Chapter 7: Drainage Water and its Effect on Wildlife Resources
Introduction ... 7-1
Laws that address wildlife issues .. 7-1
Constituents of concern ... 7-2
Water quality objectives ... 7-4
Biological sampling ... 7-4

Chapter 8: IFDM Economics
Introduction ... 8-1
Cost Breakdown .. 8-1
Funding Sources ... 8-2

Chapter 9: Laws and Regulations
Introduction ... 9-1
Questions That Should be Answered Before Proceeding with the Project 9-1
Regulatory Requirements ... 9-2
Environmental Evaluation Resources .. 9-6
Answers to the Most Common Questions Concerning the Solar Evaporator Regulations 9-7

References R-1
Appendix A-1
Glossary Glossary-1
Managing Agricultural Irrigation Drainage Water

A Landowner’s Manual
Managing Agricultural Irrigation Drainage Water:

A guide for developing
Integrated On-Farm Drainage Management systems

Dedication

This drainage management manual is dedicated to the memory of Frank Menezes, who passed away in 2001.
Frank was a valuable asset to the San Joaquin Valley’s Westside agricultural community, focusing on salinity and drainage management – in particular, development of the Integrated On-Farm Drainage Management system.
Frank’s technical knowledge, practical understanding of farmers’ and ranchers’ needs, and warm and engaging manner made him one of the Westside’s most respected and beloved individuals. Because of his tireless efforts in helping develop and implement IFDM systems on Red Rock Ranch and at other sites, this publication is dedicated to Frank Menezes.

“Funding for this project has been provided in part by the U.S. Environmental Protection Agency (USEPA) pursuant to Assistance Agreement No. C998998901-0 and any amendments thereto which has been awarded to the State Water Resources Control Board (SWRCB) for the implementation of California’s Nonpoint Source Pollution Control Program. The contents of this document do not necessarily reflect the views and policies of the USEPA or the SWRCB, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.”
A Landowner’s Manual
Managing Agricultural Irrigation Drainage Water
A guide for developing Integrated On-Farm Drainage Management systems

Edited by Tim Jacobsen and Lisa Basinal

Chapter 1
GENERAL INFORMATION
Liz Hudson¹

¹Hudson•Orth Communications, hudsonfarms@aol.com

Chapter 2
SALT MANAGEMENT USING IFDM
Tim Jacobsen¹, Lisa Basinal¹, Nettie R. Drake², Vashek Cervinka, Ph.D.³, Kathleen Buchnoff⁴, and Morris A. “Red” Martin³

¹ Center for Irrigation Technology (CIT), California State University, Fresno, tjacobse@csufresno.edu
² B&N Enterprises
³ Westside Resource Conservation District
⁴ Integrated Drainage Management Section of Agricultural Drainage Program, Department of Water Resources

Chapter 3
MONITORING, RECORDKEEPING AND REPORTING
Kathleen Buchnoff¹, Julie Vance², and Lisa Basinal³

¹ Integrated Drainage Management Section of Agricultural Drainage Program, Department of Water Resources, kbuchnoff@water.ca.gov
² Environmental Science, Department of Water Resources
³ Center for Irrigation Technology (CIT), California State University, Fresno

Chapter 4
THE IMPACT OF GEOLOGY AND SOILS IN SALT MANAGEMENT
Tim Jacobsen¹

¹ Center for Irrigation Technology (CIT), California State University, Fresno, tjacobse@csufresno.edu
Chapter 5
DRAINAGE WATER CHARACTERISTICS
Sharon Benes¹, Tim Jacobsen², and Lisa Basinal²
¹Dept. of Plant Science & Center for Irrigation Technology (CIT), California State University, Fresno, sbenes@csufresno.edu
²Center for Irrigation Technology (CIT), California State University, Fresno

Chapter 6
PLANT SELECTION FOR IFDM
Sharon Benes¹, Steve Grattan², Clarence Finch³, Lisa Basinal¹
¹Dept. of Plant Science & Center for Irrigation Technology (CIT), California State University, Fresno, sbenes@csufresno.edu,
²Dept. of Land, Air and Water Resources, University of California, Davis
³USDA Natural Resources Conservation Center (NRCS), Fresno, CA, (retired)

Chapter 7
DRAINAGE WATER AND ITS EFFECT ON WILDLIFE RESOURCES
Lisa Basinal¹ and Andrew G. Gordus, Ph.D.²
¹Center for Irrigation Technology (CIT), California State University, Fresno, lbasinal@csufresno.edu
²California Department of Fish and Game

Chapter 8
IFDM ECONOMICS
Tim Jacobsen¹ and Nettie R. Drake²
¹Center for Irrigation Technology (CIT), California State University, Fresno, tjacobse@csufresno.edu
²B&N Enterprises

Chapter 9
LAWS AND REGULATIONS
Gerald Hatler¹, Wayne Verrill², Mike Tietze, C.HG, C.E.G.³
¹Environmental Science, Department of Water Resources, ghatler@water.ca.gov
²Environmental Science, State Water Resources Control Board
³Hydrogeology, MFG, Inc.
This manual would not be possible were it not for the help, support and guidance of the following people and their affiliations:

Center for Irrigation Technology
- Tim Jacobsen
- Lisa Basinal
- Marilyn Creel

California State University, Fresno
- Sharon Benes
- Florence Cassel-Sharma
- Derek Dormedy
- Dave Goorahoo

California Department of Water Resources
- Kathleen Buchnoff
- Vashek Cervinka
- Jose Farla
- Gerald Hatler
- Charyce Taylor
- Julie Vance
- John Shelton
- Manucher Alemi
- Ray Hoagland
- Holly Jo Ferrin
- Tony Lam
- Donald Woodson
- Charles Blalock

MFG, Inc.
- Mike Tietze
- Nettie Drake, B&N Enterprises
- Bill Bazlen

Westside Resource Conservation District
- Morris “Red” Martin
- Sarge Green

U.S. Department of Agriculture-Natural Resources Conservation Service
- Clarence Finch (retired)
- Kerry Arroues
- Dave Krietemeyer
- Raul Ramirez USDA

Hudson•Orth Communications
- Liz Hudson
- Shelley Orth

U.S. Department of Agriculture-Agriculture Research Service
- Jim Ayers
- Catherine Grieve
- James Pos

California Department of Food and Agriculture
- Matt Reeve

California Department of Fish and Game
- Andy Gordus

University of California, Davis
- Steve Grattan
- Bryan Jenkins
- Kenneth Tanji (retired)

University of California, Riverside
- John Letey

The authors of Chapter 6 wish to acknowledge the hard work of Cynthia Eroh and James Bartram who conducted fieldwork that provided information for this chapter. Also, the authors express appreciation to Dr. Vashek Cervinka, Clarence Finch, and the late-Frank Menezes, who were involved in the initial plant selection for drainage water reuse projects. Gratitude also is extended to the funding agencies, California State University (CSU) Agricultural Research Initiative (ARI) and the Proposition 204 Agricultural Drainage Reuse Program administered by the California Department of Water Resources. Earlier support was provided by a grant from the USDA National Research Initiative Water Resources Assessment and Protection program.
Managing Agricultural Irrigation Drainage Water

Acknowledgements

This manual would not be possible were it not for the help, support and guidance of the following people and their affiliations:

Center for Irrigation Technology
Tim Jacobsen
Lisa Basinal
Marilyn Croel

California State University, Fresno
Sharon Benes
Florence Cassel-Sharmasarkar
Derek Dormedy
Dave Goorahoo

California Department of Water Resources
Kathleen Buchnoff
Vashek Cervinka
Jose Faria
Gerald Hatler
Charyce Taylor
Julie Vance
John Shelton
Manucher Alemi
Ray Hoagland
Holly Jo Ferrin
Tony Lam
Donald Woodson
Charles Blalock

MFG, Inc.
Mike Tietze
Nettie Drake, B&N Enterprises
Bill Bazlen

Westside Resource Conservation District
Morris “Red” Martin
Sarge Green

U.S. Department of Agriculture-Natural Resources Conservation Service
Clarence Finch (retired)
Kerry Arroues
Dave Krietemeyer
Raul Ramirez USDA

Hudson•Orth Communications
Liz Hudson
Shelley Orth

California Department of Agriculture-Agriculture Research Station
Jim Ayers
Catherine Grieve
James Poss

California Department of Food and Agriculture
Matt Reeve

California Department of Fish and Game
Andy Gordus

University of California, Davis
Steve Grattan
Bryan Jenkins
Kenneth Tanji (retired)

University of California, Riverside
John Letey

Westlands Water District
Jerry Robb

State Water Resources Control Board
Wayne Verrill
Khoban Kochai

Central Valley Regional Water Quality Control Board
Anthony Toto
Lonnie Wass

Andrews Ag, Inc.
Michael Andrews

U.S. Bureau of Reclamation
Mike Delamore

Although many people contributed to the production of this drainage manual, two people must be recognized for their longtime commitment to the development of Integrated On-Farm Drainage Management systems. Since 1985, Dr. Vashek Cervinka, of the Department of Water Resources, and Morris A. “Red” Martin, of the Westside Resources Conservation District, have been major forces in the development of agroforestry and on-farm drainage reuse to help manage salinity and shallow groundwater levels. Their early efforts and institutional knowledge of salinity and drainage on Westside soils — much of it documented in this manual — provides farmers with a viable option to ensure continued production of high quality food and fiber crops.

The authors of Chapter 6 wish to acknowledge the hard work of Cynthia Eroh and James Bartram who conducted fieldwork that provided information for this chapter. Also, the authors express appreciation to Dr. Vashek Cervinka, Clarence Finch, and the late-Frank Menezes, who were involved in the initial plant selection for drainage water reuse projects. Gratitude also is extended to the funding agencies, California State University (CSU) Agricultural Research Initiative (ARI) and the Proposition 204 Agricultural Drainage Reuse Program administered by the California Department of Water Resources. Earlier support was provided by a grant from the USDA National Research Initiative Water Resources Assessment and Protection program.