

Building Healthy Soils Composting in Vineyards

Will Bakx

<u>www.sonomacompost.com</u> willbakx@sonomacompost.com

What is Composting ?

Simple definition: Managed Decomposition

- Composting is a natural form of recycling, which continually occurs in nature. This is how nutrients are recycled in an ecosystem.
- This natural decomposition can be encouraged by "managing" ideal conditions
- End products are: compost (humus), CO₂, water and heat

Sonoma Compost Site Overview

Site Considerations

- Allocate enough space
- All weather accessibility
- Water supply
- Proper water runoff management

Composting Permit

http://www.calrecycle.ca.gov/Laws/Regulations/title14/ch31.htm

Excluded: Agricultural materials from site applied to the site. < 1000 cy given away or sold or notification with inspections

Notification: Recommended for any decent sized compost operation Will result in one inspection and a small fee per year.

Full permit: For those facilities using municipal yard debris, etc. >12,500 cy

Don't use?

Human Feces Cat/dog Feces Large Pieces of Wood **Diseased Plant** Material (mealy bug) Large Quantity of Grease or Oil **Persistent Pesticides Toxins Compostable plastics**

OK to Use

- Grape pomace
- Prunings
- Weeds
- Manures (pesticides, permit issues)
- Grape lees (irrigation substitute)
- Diatomaceous Earth

Compost Pile at Benziger Winery, Glenn Ellen, CA

- 15-25% of grape mass
- Bulk density 675-1350 lbs/yd³
- Moisture after pressing: 20-30%.
- C/N from 15:1 to 45:1

Food: Carbon to Nitrogen Ratio

- Ideal carbon to nitrogen ratio (C:N) = 30:1
- Browns and greens
- Availability: Wood chips vs head of lettuce
- Layering vs mixing
- Use resources and experience
- <u>http://compostingtechnology.com/resources/compost-calculator-tool/</u>

C/N Calculation

D Qty	Wood Chips, Softwood	0.4 0.6 0.3 0.63 0.7
D Qty	Green Waste	0.2 0.8 Density
D Qty	Manure, Dairy Cow	45 50 55 60 40 65 35 59 % 70
D Qty	Grape Pomace	30 75 Moisture
		20 25 30 35 40 15 40 10 $22:1$ 45
		5 50+ C:N Ratio

Stockpiling of Grape Waste

The Composting Process

A biological process
Water 40-60 %
Oxygen/Porosity (Aerobic)
Food
Time

Moisture By Feel

Squeeze a handful of compost • > 60% Water drips out • 55-60% Sheen on surface • 50-55% Ball stays when tapped • 45-50% Ball falls apart when tapped • 40-45% No ball forms • < 40% Hand feels dusty dry

Before - Factory Nozzles

After - Customized Nozzles

From: UC Compost Council, Compost Operators Training Course

Evaluate the Health of the Pile

Evaluating the Temperature
Size of Pile
Moisture by Feel
Food Composition

THE PRESS DEMOCRAT . WEDNESDAY, NOVEMBER 24, 2010

LOS ANGELES Indoor compost pile ignites house

A 1,700-plant marijuana grow house in the San Gabriel area erupted in flames when a living room compost pile ignited Monday.

Detective David Mertens said a man was seen running from the home but there are no arrests. Mertens says gangs rent out homes to raise pot and investigators find a couple of similar marijuana grow houses each month.

Temperature/Turning Log

)	-	S	onc) m a		0 m	pos	ł) Te	pmp.	/Τω	rhing	Ĺ	9)
Cell:	Wi	ndrow	43	Lengt	h: 27	0'	# of R	eading	s: 2 ·	1st Re	ading:	67'	Subse	quent	Temps.	135	Deptl	n: 24"
DATE5	10/23	10/24	10/27	10/28	10/29	P130	1=/31	11/3	11.74	11/5	11/6	<u> </u>	11/10	11/11	11/12	1113	119	1
Higher			,						1									Higher
170																		170 deg
168																L		168
166																		166
164									1				Π					164
162																		162
160										21			2					160
158													1=			·		158
156												1	1 .		1			156
154		-				 		<u> </u>					1		12			154
152			<u> </u>				1		<u> </u>						<u> </u>	l		152
152				5	<u> </u>	12	+╹──			<u> </u>					<u> </u>			150
149						<u> </u>									<u>†</u>		1	148
140		·	· · ·	· · · · · · · ·	<u> </u>	1	[·		-								1	146
1140					<u> </u>	1			<u> </u>	+				1	<u>}</u>	2		144
144			1,2		 	<u> </u>		42								1	+	142
142				·	 	 	ļ		<u> </u>	<u> </u>				1	<u> </u>	·······	+	140
140				Į	1		<u> </u>			}	·		+	· · · · · ·	<u>├</u>		3	138
138		<u> </u>		ļ		+	 			+	· · · · ·						-	136
136		2		ļ	12	<u> </u>	·				5		+		1	+		134
134		<u> </u>	ļ		i	ļ	ļ				4				<u> </u>		+	132
132		<u> </u>					<u> </u>					<u> </u>	+				<u> </u>	120
130		L		l	 		ļ	l		1	ļ	<u> </u>	_	<u> </u>			+	129
128					ļ		ļ	<u> </u>	ļ	<u> </u>	ļ	ļ		 			<u>+ a</u>	1120
126			L	L	<u> </u>			ļ	<u> </u>		ļ	· · ·		+		<u> </u>	╞──┼┝	1120
124				I		1	I		<u> </u>	· ·	ļ			ļ			1-11	124
122		<u> </u>	· · · ·	I		l	<u> </u>			1	ļ		<u> </u>	<u> </u>		┣	\ ₩	122
120	2									<u> </u>	ļ					┿───	_ /⊬-	1110
118			1			l			1		1		+		+	L	 -	110
116							1	<u> </u>			L			Į			₽- -4	110
114						1				1								1114
112					1		1					<u> </u>			↓		1.14	112
110		<u> </u>	1	1										L		<u> </u>	105	110
108	1	1	1	1	1	[1				<u> </u>		1/1	108
106	<u> </u>	1		1	1	1		1					1			1		106
104		1	T	1	1	1		1		1					1			104
102	1	1	1	1	1		1	1						1			9	102
100		1	1	1		1	1		1.	1	1						21	100
98	├ ──	+	1		-	1	+	1	1		T	1						98
96	 	+	+	+	+	t	1	1	1	1	1	1	1	1			L V	96
04	<u> </u>		+	1		+	+	+	+		1	1.	1	1	1	1.	0	94
02		+	+		+	+	+			1	1	1		1		1	π	92
92		·	+	+	+	1		+		+	+	1	1		1		Y	90
1000		1	+ ·		+	+	+	1	1		1	1		1			1	Lowe
Lower	1	1	1			-	+			+ ×	+	+	×	+	-			

1-2-3 Rollover

OLVO II

Meeting Quality Standards

Compost (and mulch) will be meeting these standards:

- Will be kept at a temperature of at least 131 degrees Fahrenheit for at least 15 days during which time the piles will be turned at least 5 times.
- Fecal coliform tested state certified shall be less than 1000 MPN/dgr, and salmonella sp. shall be less than3 MPN/ 4 dgr.
- Metal Concentrations
- Pesticides
- Compost Maturity

The Role of Organic Matter in Soil: Promote Soil Health

- Soil Structure
- Nutrient management
- Conservation of soil
- Soil moisture management
- Diversity of Microorganisms

Soil Structure

Can't change texture: Make soil workable

> Increases water infiltration rate/ holds water Enhances root penetration

Optimizes soil aeration

Stimulates microbial diversity

Soil Aggregation

 Aggregation Formation • Clay charge • Root web • Organic glues • Fungal hyphae Aggregation Destruction • Mulch

Nutrient Management

Increase CEC

- Immobilize Water Soluble Nutrients
- Long Term Nutrient Release
- Nitrogen Fixing Micoorganisms

Soil Moisture Management

Increased Water Holding Capacity (Sandy)
Increased Water Permeability (Clay)

Diversity of Soil Microorganisms

Diversity of Soil Microorganisms

A Tool in IPM
Increased Competition/Predation
Site Occupation
Nutrient Management
Fungal Presence for Aggregation

Microbial Diversity

Combined Foodweb Results

Sonoma Compost Co Will Bakk			(707) 664-1943				S	Submission Number:		r: Sa	Sample Received		Report Sent:			Invoice Number:		ber:
			willbakx@sonomacompost.com					_01-019415			4/1/2009					0		
550 Meach	um RD																	
Petaluma,	CA 94952	-9641 L	JS															
Customer Reference	ID	Dry Weight	Active Bacteria	Total Bacteria	Active Fungi	Total Fungi	Hyphai Diameter	Flagellates	Protozoa Amoeba	Ciliates	Nematod	VAM	TF/TB	AF/TF	AB/TB	AF/AB	Nitrogen	Actino Bacteria
Soil Amendme	ent																	
BDCCSF Mar	01-107003	0.50	84.8	1007	13.6	466	2.85	11529	11529	567	3.69	N/A	0.46	0.03	0.08	0.16	100-150	6.61
BDCSSF Mar	01-107004	0.460	133	775	28.1	492	2.9	59799	29899	299	7.31	N/A	0.64	0.06	0.17	0.21	100-150	17.8
BDCPSF Mar	01-107005	0.430	117	913	13.5	992	2.85	13372	32217	3221	19.3	N/A	1.09	0.01	0.13	0.12	100-150	115

Feed the Cover Crop

Compost Rate Worksheet

Date: 2/16/2012 Vineyard Block: Example Compost Source: Compro Soil Amendments Compost Type: Grape Pomace Source Contact: Johnny Massa

		omnact	Vetriant	_	Estimated Nutrient Available	Estimated Release Ibs/Ton	Desired Nutrient	Compost Rate	Total	Total Compost	Total Compost	
		ompost	Nutrient	5	Teal 1	Composi	rei Acie (ibs.)	TONSACIE	Mores	order (tons)	order (ya -	
		% wet	Ib/yd	Ib/ton	0.00	10.40	-	4.0	e	1 24	50	
	N	2.02	21.2	52.4	0.20	10.48	20	4.8	þ	29	28	
	P	0.99	8.0	19.8	0.40	7.82	30					
	ĸ	3.13	25.4	62,6	0,60	37.56	1/9					
	Ca	1.14	9.2	22.8			Ť					
	Mg	0.55	4.5	11.0			If you apply 5 ton	s of compost/acre,				
	5	0.20	1.6	4.0			50 pounds N/acre	will be avialable in	1			
	Na	0.11	0.9	2.2			vear one, as will 3	8 pounds/acre P	-			
	AI		0.0	0,0			and 179 nounds/s	acre K				
	Fe		0,0	0,0			and the boundary					
	Mn		0.0	0.0								
	Cu		0.0	0.0								
	8		0.0	0.0								
	Zn	1	0.0	0,0								
Wt/Vol	lb/yd ³	810	Range i	s 800 ti	o 1000 lbs							
-	pН	7.2										
Notes:												
Compos	it rates b	based on ((limited b	y) desir	ed N rates							
Actual N	based o	on 20% re	lease in	year 1.	1st year releas	se considered only.						
P and K	release	estimated	as 40%	and 60	% respectively	у.						
PPMcor	werted t	o%:1%i	s equal t	p 10,000	ppm or 1 pp	m is 0.0001%						

Mulch/Compost Calculations. Only change in the yellow cells

Nitrogen LBS/ton*	Rate Applied T/Ac	Total N Applied	Availability (T-2)	Availability Application Method (T-3)	Total Available N/Ac	Total N From Last Year	Available from Last Year	Total From 2 Years Ago	Available from 2 Years ago	From Existing SOM**	Total N Available
52.4	5	262	0.4	0,6	62,88	28	4.2	56	2.8		69.88
All the law I will	Description	Station OCh.	- torset							20	

*From Lab Report ** line 36 below

25

T-2 Availability of Nutrient Based On Time Of Application Before Planting

-	N
1 Month Before	0,5
3 Months Before	0.4
6 Months Before	0.25
1=100%	

T-3 Nitrogen Availability Based On Application Method

Method	N
Injected	1
Worked In, Or Rained On Same day	0,8
Worked In, Or Rained On Nextday	0.7
Lefton Surface For More Than 2 Days	0.6

Existing Soil Organic Matter (SOM)

Texture	Pounds of N Released Po Acre for Each 1% of SOM				
Loamy Sands & Sandy Loams	40 to 60				
Loams & SiltLoams	15 to 30				
Silty Clay Loams & Clay Loams	10 to 20				

Example: A clay soil with a SOM of 2.5% will release approximately 10 lbs of N for each 1% of SOM or a total of 25 lbs/Ac Use either H7 and J7, or K7, but not both

Source: Sonoma Compost, Will Bakx, 707-664-9113

Compost in the Field

Thank you Questions?

Will Bakx <u>willbakx@sonomacompost.com</u> <u>www.sonomacompost.com</u> 707 664 9113 CERTIFIED biodynamic®